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CHAPTER EIGHT 
 

FOURIER ANALYSIS 
 
 
In this chapter, Fourier analysis will be discussed.  Topics  covered are  Fou-
rier series expansion, Fourier transform, discrete Fourier  transform, and fast 
Fourier transform.  Some applications of Fourier analysis, using MATLAB, 
will also be discussed. 
 
 

8.1 FOURIER SERIES 
 
If a function g t( ) is periodic with period Tp , i.e., 
 
 g t g t Tp( ) ( )= ±      (8.1) 
 
and in any finite interval g t( ) has at most a finite number of discontinuities 
and a finite number of maxima and minima (Dirichlets conditions), and in 
addition, 
 

 g t dt
Tp

( ) < ∞∫
0

      (8.2) 

 
then g t( ) can be expressed  with  series of sinusoids.  That is, 

        g t
a

a nw t b nw tn n
n

( ) cos( ) sin( )= + +
=

∞

∑0
0 0

12
  (8.3)  

 
where 

 w
Tp

0

2
=

π
      (8.4) 

 
and the Fourier coefficients an  and bn  are determined by the following equa-
tions.  
 

 a
T

g t nw t dtn
p t

t T

o

o p

=
+

∫
2

0( ) cos( )   n = 0, 1,2, …  (8.5) 
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 b
T

g t nw t dtn
p t

t T

o

o p

=
+

∫
2

0( ) sin( )   n = 0, 1, 2 …  (8.6) 

Equation (8.3) is called the trigonometric Fourier series. The term 
a0

2
 in 

Equation (8.3) is the dc component of the series and is the average value of 
g t( ) over a period.  The term a nw t b nw tn ncos( ) sin( )0 0+  is called the n-
th harmonic.  The first harmonic is obtained when  n = 1.  The latter is also 
called the fundamental with the fundamental frequency of  ωo .  When n = 2, 
we   have the second harmonic and so on. 
 
Equation (8.3) can be rewritten as 
 

g t
a

A nw tn n
n

( ) cos( )= + +
=

∞

∑0
0

12
Θ    (8.7) 

 
where 
 

 A a bn n n= +2 2      (8.8) 
and 

 Θn
n

n

b
a

= −






−tan 1      (8.9) 

 
The total power in g t( ) is given by the Parseval’s equation: 
                                 

 P
T

g t dt A
A

p t

t T

dc
n

no

o p

= = +
+

=

∞

∫ ∑1
2

2 2
2

1
( )    (8.10) 

 
where 

 A
a

dc
2 0

2

2
=





       (8.11) 

 
The following example shows the synthesis of  a square wave using Fourier 
series expansion. 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 

Example 8.1 
 
Using Fourier series expansion,  a square wave with a period of 2 ms, peak-to-
peak value of 2 volts and average value of zero volt can be expressed as 
 

g t
n

n f t
n

( )
( )

sin[( ) ]=
−

−
=

∞

∑4 1
2 1

2 1 2 0
1π

π      (8.12)           

 
where  
 

f 0 500=  Hz 
 
if a t( )  is given as 
 

 a t
n

n f t
n

( )
( )

sin[( ) ]=
−

−
=

∑4 1
2 1

2 1 2 0
1

12

π
π   (8.13) 

 
Write a MATLAB program to plot a t( )  from 0 to 4 ms at intervals of  0.05 
ms and to show that a t( )  is a good approximation of g(t). 
 
 
Solution 
 
MATLAB Script 
 

% fourier series expansion 
f = 500; c = 4/pi; dt = 5.0e-05; 
tpts = (4.0e-3/5.0e-5) + 1; 
for n = 1: 12 
for m = 1: tpts 
s1(n,m) = (4/pi)*(1/(2*n - 1))*sin((2*n - 1)*2*pi*f*dt*(m-1)); 
end 
end 
for m = 1:tpts 
 a1 = s1(:,m); 
 a2(m) = sum(a1); 
end 
f1 = a2'; 
t = 0.0:5.0e-5:4.0e-3; 
clg 
plot(t,f1) 
xlabel('Time, s') 
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ylabel('Amplitude, V') 
title('Fourier series expansion') 

 
Figure 8.1 shows the plot of  a t( ) . 

 
 
 Figure 8.1  Approximation to Square Wave 
 
 
By using the Euler’s identity, the cosine and sine functions of Equation (8.3) 
can be replaced by  exponential equivalents, yielding the expression 
 

 g t c jnw tn
n

( ) exp( )=
=−∞

∞

∑ 0       (8.14) 

                                       
where 

 c
T

g t jnw t dtn
p t

T

p

p
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−
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2

0( ) exp( )
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   (8.15) 

and 

 w
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0

2
=

π
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Equation (8.14) is termed the exponential Fourier series expansion. The coeffi-
cient cn  is related to the  coefficients an   and  bn of Equations (8.5) and (8.6) 
by the expression 
  

 c a b
b
an n n

n

n
= + ∠ − −1

2
2 2 1tan ( )    (8.16) 

 
In addition, cn  relates to  An and φn  of Equations (8.8) and (8.9) by the rela-
tion 

 c
A

n
n

n= ∠Θ
2

      (8.17) 

The plot of cn  versus frequency is termed the discrete amplitude spectrum or 
the line  spectrum.  It provides information on the amplitude spectral compo-
nents of g t( ).    A similar plot of  ∠ cn   versus frequency is called the dis-
crete phase spectrum and the latter gives information on the phase components 
with respect to the frequency of g t( ) . 
 
If an input signal x tn ( )  
 
 x t c jnw tn n o( ) exp( )=     (8.18) 
 
passes through a system with transfer function H w( ) , then the output of the 
system y tn ( ) is 
 
 y t H jnw c jnw tn o n o( ) ( ) exp( )=    (8.19) 
 
The block diagram of the input/output relation is shown in Figure 8.2. 
 
 

        
H(s)xn(t) yn(t)

 
 
 Figure 8.2  Input/Output Relationship 
 
However, with an input x t( )  consisting of a linear combination of complex 
excitations, 
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 x t c jnw tn
n

n o( ) exp( )=
=−∞

∞

∑     (8.20) 

                                          
the response at the output of the system is 
 

y t H jnw c jnw tn
n

o n o( ) ( ) exp( )=
=−∞

∞

∑    (8.21)     

 
The following two examples show how to use MATLAB  to obtain the coeffi-
cients of Fourier series expansion. 
 
 
Example 8.2 
 
For the full-wave rectifier waveform shown in Figure 8.3, the period is 0.0333s 
and the amplitude is 169.71 Volts.    
(a)    Write a MATLAB program to obtain the exponential Fourier series  
 coefficients cn  for  n =  0,1, 2, .. , 19 
(b)    Find the dc value.      
(c)   Plot the amplitude and phase spectrum. 
   

 
 
 Figure 8.3  Full-wave Rectifier Waveform 
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Solution 
 

diary ex8_2.dat 
% generate the full-wave rectifier waveform 
f1 = 60;   
inv = 1/f1; inc = 1/(80*f1); tnum = 3*inv; 
t = 0:inc:tnum; 
g1 = 120*sqrt(2)*sin(2*pi*f1*t); 
g = abs(g1); 
N = length(g); 
% 
% obtain the exponential Fourier series coefficients 
 
num = 20; 
for i = 1:num 
     for m = 1:N 
      cint(m) = exp(-j*2*pi*(i-1)*m/N)*g(m); 
     end 
  c(i) = sum(cint)/N; 
end 
cmag = abs(c); 
cphase = angle(c); 
 
%print dc value 
disp('dc value of g(t)'); cmag(1) 
% plot the magnitude and phase spectrum 
 
f = (0:num-1)*60; 
subplot(121), stem(f(1:5),cmag(1:5)) 
title('Amplitude spectrum') 
xlabel('Frequency, Hz') 
subplot(122), stem(f(1:5),cphase(1:5)) 
title('Phase spectrum') 
xlabel('Frequency, Hz') 
diary 

 
 
dc value of g(t) 

 
ans = 
         107.5344 
 

Figure 8.4 shows the magnitude and phase  spectra of  Figure 8.3. 
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 Figure 8.4  Magnitude and Phase  Spectra of a Full-wave  
   Rectification Waveform 
 
 
 
Example 8.3 
 
The periodic signal shown in Figure 8.5 can be expressed as 
 

 
g t e t
g t g t

t( )
( ) ( )

= − ≤ <
+ =

−2 1 1
2

    

   
(i)  Show that its exponential Fourier series expansion can be expressed as 
 

 g t
e e

jn
jn t

n

n
( )

( ) ( )
( )

exp( )=
− −

+

−

=−∞

∞

∑ 1
2 2

2 2

π
π   (8.22) 

 
(ii)  Using  a MATLAB program,  synthesize g t( )  using 20 terms, i.e., 
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 Figure 8.5  Periodic Exponential Signal 
 
 
Solution 
 
(i) 

 g t c jnw tn o
n
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∞
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 c
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(ii)  MATLAB  Script 

 
% synthesis of g(t) using exponential Fourier series expansion 
dt = 0.05;  
  tpts = 8.0/dt +1; 
cst = exp(2) - exp(-2); 
 
for n = -10:10 
  for m = 1:tpts 
    g1(n+11,m) = ((0.5*cst*((-1)^n))/(2+j*n*pi))*(exp(j*n*pi*dt*(m-
1))); 
  end 
end 
 
for m = 1: tpts 
 g2 = g1(:,m); 
 g3(m) = sum(g2); 
end 
 
g = g3'; 
t = -4:0.05:4.0; 
plot(t,g) 
xlabel('Time, s') 
ylabel('Amplitude') 
title('Approximation of g(t)') 

 
 
Figure 8.6 shows the approximation  of g t( ) . 
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 Figure 8.6  An  Approximation of g t( ) . 
 
 
 

8.2 FOURIER TRANSFORMS 
 
If  g t( )  is  a nonperiodic deterministic signal expressed as a function of time 
t, then the Fourier  transform of g t( ) is given by the integral expression: 

 G f g t j ft dt( ) ( ) exp( )= −
−∞

∞

∫ 2π     (8.23) 

where 
 
 j = −1       and  
 

f   denotes frequency 
 
 
g t( )  can be obtained from the Fourier transform G f( )  by the Inverse Fou-
rier Transform formula: 
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 g t G f j ft df( ) ( ) exp( )=
−∞

∞

∫ 2π     (8.24) 

 
For a signal g t( )  to be Fourier transformable, it should satisfy the Dirichlet’s 
conditions that were discussed in  Section 8.1.   If g t( ) is continuous and non-
periodic, then G f( )  will be continuous and periodic.   However, if  g(t) is 
continuous and periodic, then G f( )  will discrete and nonperiodic;  that is 
 
 g t g t nTp( ) ( )= ±      (8.25) 
 
where 
 Tp = period 
 
then the Fourier transform of g t( )  is 
 

 G f
T

c f
Tp

n
n p

( ) ( )= −
=−∞

∞

∑1 1
δ     (8.26)  

 
where 

 c
T

g t j nf t dtn
p t

T

o
p

p

= −
−
∫

1
2

2

2

( ) exp( )
/

/

π    (8.27)

  
 
8.2.1 Properties of Fourier transform 
 
If g t( )  and G f( )  are Fourier transform pairs, and they are expressed as 
 
 g t G f( ) ( )⇔       (8.28) 
 
then the Fourier transform will have the following properties: 
 
Linearity 
 
 ag t bg t aG f bG f1 2 1 2( ) ( ) ( ) ( )+ ⇔ +    (8.29) 
 
where  

a and b are constants 
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Time scaling 

 g at
a

G
f
a

( ) ⇔ 





1
     (8.30) 

Duality 
 
 G t g f( ) ( )⇔ −      (8.31) 
 
Time shifting 
 
 g t t G f j ft( ) ( ) exp( )− ⇔ −0 02π    (8.32) 
 
Frequency Shifting 
 
 exp( ) ( ) ( )j f t g t G f fC C2 ⇔ −    (8.33) 
 
Definition in the time domain 
 

 
dg t

dt
j fG f

( )
( )⇔ 2π      (8.34) 

 
Integration in the time domain 
 

 g d
j f

G f
G

f
t

( ) ( )
( )

( )τ τ
π

δ
−∞
∫ ⇔ +

1
2

0
2

δ (f)  (8.35) 

 
Multiplication in the time domain 

g t g t G G f d1 2 1 2( ) ( ) ( ) ( )⇔ −
−∞

∞

∫ λ λ λ     (8.36) 

 
Convolution in the time domain 
   

 g g t d G f G f1 2 1 2( ) ( ) ( ) ( )τ τ τ− ⇔
−∞

∞

∫    (8.37) 
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8.3 DISCRETE AND FAST FOURIER TRANSFORMS 
 
Fourier series links a continuous time signal into the discrete-frequency do-
main.  The periodicity of the time-domain signal forces the spectrum to be dis-
crete.  The discrete Fourier transform of a discrete-time signal  g n[ ]  is given 
as 

G k g n j nk N
n

N

[ ] [ ]exp( / )= −
=

−

∑ 2
0

1

π   k  = 0,1, …, N-1 (8.38)            

 
The inverse discrete Fourier transform, g n[ ]  is 
 

 g n G k j nk N
k

N

[ ] [ ]exp( / )=
=

−

∑ 2
0

1

π     n  = 0,1,…, N-1 (8.39) 

 
where 
 
 N is the number of time sequence values of  g n[ ] .  It is also  
  the total number frequency sequence values in G k[ ] . 
 
 T is the time interval between two consecutive samples of the  
  input sequence g n[ ] . 
 
 F is the frequency interval between two consecutive samples  
  of the output sequence G k[ ] . 
 
N, T, and F are related by the expression 
 

 NT
F

=
1

      (8.40) 

   
NT  is also equal to the record length.  The time interval, T, between samples 

should be chosen such  that the Shannon’s Sampling theorem is satisfied. This 
means that T should be less than the reciprocal of  2 f H , where f H  is the 
highest significant frequency component in the continuous time signal g t( )  
from which the sequence  g n[ ]  was obtained.    Several fast DFT algorithms 
require N to be an integer power of 2. 
 
A discrete-time function will have a periodic spectrum.  In DFT, both the time 
function and frequency functions are periodic.  Because of the periodicity of  
DFT, it is common to regard points from  n = 1 through n = N/2 as positive, 
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and points from n = N/2 through n = N - 1 as negative frequencies.  In addi-
tion, since both the time and frequency sequences are periodic,  DFT values at 
points n = N/2 through n = N - 1 are equal to the DFT values at points n = N/2 
through  n = 1. 
 
In general, if the time-sequence is real-valued, then the DFT will have  real 
components  which are even and imaginary components that are odd.  Simi-
larly, for an imaginary valued time sequence, the DFT values will have an odd 
real component and an even imaginary component. 
 
If we define the weighting function WN   as 
 

 W e eN

j
N j FT= =

−
−

2
2

π
π      (8.41) 

   
Equations (8.38) and (8.39) can be re-expressed as 
   

 G k g n WN
kn

n

N

[ ] [ ]=
=

−

∑
0

1

     (8.42) 

 
and 

 g n G k WN
kn

k

N

[ ] [ ]= −

=

−

∑
0

1

     (8.43) 

 
The Fast Fourier Transform, FFT,  is an efficient method  for computing  the 
discrete Fourier transform.  FFT reduces the number of computations needed 
for computing DFT.  For example, if a sequence has  N points,  and N is an in-
tegral power of 2,  then DFT requires N 2  operations, whereas FFT requires 
N

N
2 2log ( ) complex multiplication, 

N
N

2 2log ( )  complex additions and  

N
N

2 2log ( )   subtractions.   For N = 1024, the computational reduction from 

DFT to FFT is more than 200 to 1. 
 
 
The FFT can be used to (a) obtain the power spectrum of a signal, (b) do digi-
tal filtering, and (c) obtain the correlation between two signals.   
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



8.3.1  MATLAB function fft 
 
The MATLAB function for performing Fast Fourier Transforms is 
 
 fft x( )  
  
where x  is the vector to be transformed. 
 
 fft x N( , )  
 
is also MATLAB command that can be used to obtain N-point fft.  The vector 
x  is truncated or  zeros are added to N, if necessary. 
 
The MATLAB functions for performing inverse fft is 
 
 ifft x( ).  
 

 [ ]z z fftplot x tsm p, ( , )=  

 
is used to obtain fft and plot the magnitude  zm   and  z p  of DFT of x.   The 
sampling  interval is ts.  Its default value is 1.  The spectra are plotted versus 
the digital frequency F.   The following three examples illustrate usage of  
MATLAB function fft. 
 
 
Example 8.4 
 
Given the sequence   x n[ ]   = ( 1, 2, 1).  (a)    Calculate the DFT of x n[ ] .  (b)    
Use the fft algorithm to find DFT of x n[ ] .   (c)    Compare the results of  (a) 
and (b). 
 
Solution 
 
(a)   From Equation (8.42) 
 

 G k g n WN
kn

n

N

[ ] [ ]=
=

−

∑
0

1

 

 
From Equation (8.41) 
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W W
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3
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2
3

3
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3

3
3

3
0

3
4

3
1

1

05 0866

05 0 866
1

=

= = − −

= = − +

= =

=

−

−

π

π

. .

. .  

 
Using Equation (8.41), we have 
 

 G g n W
n

[ ] [ ]0 1 2 1 43
0

0

2

= = + + =
=

∑  

G g n W g W g W g W

j j j

n

n
[ ] [ ] [ ] [ ] [ ]

( . . ) ( . . ) . .

1 0 1 2

1 2 05 0866 05 0866 05 0866

3
0

2

3
0

3
1

3
2= = + +

= + − − + − + = − −
=
∑

 

G g n W g W g W g W

j j j

n

n
[ ] [ ] [ ] [ ] [ ]

( . . ) ( . . ) . .

2 0 1 2

1 2 05 0866 05 0866 05 0866

3
2

0

2

3
0

3
2

3
4= = + +

= + − + + − − = − +
=
∑

 

 
(b)   The MATLAB program for performing the DFT of x n[ ]  is 
 
MATLAB Script 

 
diary ex8_4.dat 
% 
x = [1 2 1]; 
xfft = fft(x) 
diary 
 

 
The results are 

 
xfft = 
        4.0000    -0.5000 - 0.8660i      -0.5000 + 0.8660i 

 
(c)   It can be seen that the answers obtained from parts (a) and (b) are  
 identical. 
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Example 8.5 
 
Signal g t( )  is given as 
 

 [ ]g t e t u tt( ) cos ( ) ( )= −4 2 102 π  
 
(a)     Find the Fourier transform of  g t( ) , i.e.,  G f( ) . 
(b)     Find the DFT of  g t( )  when the sampling interval is 0.05 s  with N  
 = 1000. 
(c)     Find the DFT of g t( )  when the sampling interval is 0.2 s with  N =  
 250. 
(d)    Compare the results obtained from parts a, b, and  c. 
 
 
Solution 
 
(a)  g t( )  can be expressed as 
 

 g t e e e u tt j t j t( ) ( )= +





− −4
1
2

1
2

2 20 20π π  

 
Using the frequency shifting property of the Fourier Transform, we get 
 

 G f
j f j f

( )
( ) ( )

=
+ −

+
+ +

2
2 2 10

2
2 2 10π π

 

 
(b, c)  The MATLAB program for computing the DFT of g t( )  is  
 
MATLAB Script 
 

% DFT of g(t) 
%  Sample 1, Sampling interval of 0.05 s 
ts1 = 0.05;   % sampling interval 
fs1 = 1/ts1;  %  Sampling frequency 
n1 = 1000;     %  Total Samples 
m1 = 1:n1;    %  Number of bins 
sint1 = ts1*(m1 - 1);  %  Sampling instants 
freq1 = (m1 - 1)*fs1/n1;  % frequencies  
gb = (4*exp(-2*sint1)).*cos(2*pi*10*sint1); 
gb_abs = abs(fft(gb)); 
subplot(121) 
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plot(freq1, gb_abs) 
title('DFT of g(t), 0.05s Sampling interval') 
xlabel('Frequency (Hz)') 
 
%  Sample 2,  Sampling interval of 0.2 s 
ts2 = 0.2;   % sampling interval 
fs2 = 1/ts2;  %  Sampling frequency 
n2 = 250;     %  Total Samples 
m2 = 1:n2;    %  Number of bins 
sint2 = ts2*(m2 - 1);  %  Sampling instants 
freq2 = (m2 - 1)*fs2/n2;  % frequencies  
gc = (4*exp(-2*sint2)).*cos(2*pi*10*sint2); 
gc_abs = abs(fft(gc)); 
subplot(122) 
plot(freq2, gc_abs) 
title('DFT of g(t), 0.2s Sampling interval') 
xlabel('Frequency (Hz)') 

 
The two plots  are shown in  Figure 8.7. 
 

 
 
 Figure 8.7  DFT of  g t( )  
 
(d)  From Figure 8.7, it can be seen that with the sample interval of 0.05 s, 

there was no aliasing and spectrum of G k[ ] in part (b) is almost the same 
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as that  of G f( )  of part (a).   With the sampling interval being 0.2 s (less 
than the Nyquist rate), there is aliasing and the spectrum of G k[ ]  is dif-
ferent from that of G f( ) . 

 
 
Example 8.6 
 
Given a noisy signal 
 
 g t f t n t( ) sin( ) . ( )= +2 0 51π  
 
where  

f1   =  100 Hz 
 
n(t) is a normally distributed white noise.  The duration of  g t( ) is 0.5 sec-
onds.  Use MATLAB function rand to generate the noise signal.    Use 
MATLAB to obtain the power spectral density of  g t( ) . 
 
 
Solution 
 
A representative program that can be used to plot the noisy signal and obtain 
the power spectral  density is 
 
MATLAB Script 

 
% power spectral estimation of noisy signal 
t = 0.0:0.002:0.5; 
f1 =100; 
 
% generate the sine portion of signal 
x = sin(2*pi*f1*t); 
 
% generate a normally distributed white noise 
n = 0.5*randn(size(t)); 
 
% generate the noisy signal 
y = x+n; 
subplot(211), plot(t(1:50),y(1:50)), 
title('Nosiy time domain signal') 
 
% power spectral estimation is done 
yfft = fft(y,256); 
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len = length(yfft); 
pyy = yfft.*conj(yfft)/len; 
f = (500./256)*(0:127); 
 
subplot(212), plot(f,pyy(1:128)), 
title('power spectral density'), 
xlabel('frequency in Hz') 

 
 
The plot of the noisy signal and its spectrum is shown in Figure 8.8.  The am-
plitude of the noise and the sinusoidal signal can be changed to observe their 
effects on the spectrum. 
 

 
 
 Figure 8.8  Noisy Signal and Its Spectrum 
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EXERCISES   
 
 
8.1 The triangular waveform, shown in Figure P8.1 can be expressed as 
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  Figure P8.1  Triangular Waveform 
 

If A  = 1,  T  = 8 ms, and sampling interval  is 0.1 ms. 
 

(a)     Write MATLAB program to resynthesize  g t( )  if 20  
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 terms are used. 
 
(b)     What is the root-mean-squared value of the function that is  

  the difference between g t( )  and the approximation to   
  g t( )  when 20 terms are used for the calculation of g t( ) ? 
 
8.2 A periodic pulse train  g t( )  is shown in Figure P8.2. 
 

       1 2 3 4 5 6 7 8

4

g(t)

t(s)
0  

 
  Figure P8.2  Periodic Pulse Train 
 
  

If   g t( )  can be expressed by Equation (8.3) ,  
(a)    Derive expressions for determining the Fourier Series coeffi-
cients an  and bn .         
 
(b)    Write a MATLAB program to obtain an  and bn    for  n = 0 ,  
 1, ......, 10   by using Equations (8.5) and (8.6). 
 
(c)     Resynthesis g(t) using 10 terms of  the values an , bn     

   obtained from part (b). 
 
8.3 For the half-wave rectifier waveform, shown in Figure P8.3, with a  
 period of 0.01 s and a peak voltage of 17 volts. 
 

(a)     Write a MATLAB program to obtain the exponential  
 Fourier series coefficients cn  for  n =  0, 1, ......., 20. 
 
(b)     Plot the amplitude spectrum. 
 
(c)    Using the values obtained in (a),  use MATLAB to  

  regenerate the approximation to g t( )   when 20 terms of the  
  exponential Fourier series are used. 
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  Figure P8.3  Half-Wave Rectifier Waveform 
 
8.4 Figure P8.4(a)  is a periodic triangular waveform. 
 

    

v(t)

-2 0 2 4 6 t(s)

2

 
 
 Figure P8.4(a)  Periodic Triangular Waveform 
 

(a)    Derive the Fourier series coefficients an  and bn  . 
 
(b)   With the signal v t( )  of the circuit shown in P8.4(b),   
 derive the expression for the current i t( ) . 
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V(t)

VL(t)

VR(t)

4 H

3Ω

i(t)

 
  Figure P8.4(b)  Simple RL Circuit 
 

(c)      Plot the voltages v tR ( ),  v tL ( )  and also the sum of  
 v tR ( )  and v tL ( ).  
 
(d)           Compare the voltages of v tR ( )  + v tL ( )   to V(t). 

 
 
8.5 If the periodic waveform shown in Figure 8.5 is the input of the  
 circuit shown in Figure P8.5. 

(a)      Derive the mathematical expression for v tC ( ).  
 
(b)       Use MATLAB to plot the signals g t( )  and v tC ( ).  

 

     

VC(t)

8 Ω

4 Ω 2 Fg(t)

 
  Figure P8.5  RC Circuit 
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8.6 The unit sample response of a filter  is given as 
 

  ( )h n[ ] = − −0 1 1 0 1 1 0  
 

(a)      Find the discrete Fourier transform of h n[ ] ;  assume that  
 the values of h n[ ]  not shown are zero. 

(b)      If the input to the filter is x n
n

u n[ ] sin [ ]= 



8

,  find the  

  output of the filter. 
 
 
8.7 g t t t( ) sin( ) sin( )= +200 400π π     
 

(a)     Generate 512 points of  g t( ).   Using the FFT  algorithm,  
 generate and plot the frequency   content of  g t( ) .   
 Assume a sampling rate of 1200 Hz.  Find the power  
 spectrum. 
 
(b)     Verify that the frequencies in  g t( )  are  observable  in the  

  FFT plot. 
 
 
8.8 Find the DFT of 
 
  g t e u tt( ) ( )= −5  
   

(a)     Find the Fourier transform of  g t( ) . 
 
(b)     Find the DFT of g t( ) using the sampling interval of 0.01 s  
 and time duration of 5 seconds. 
 
(c)          Compare the results obtained from parts (a) and (b). 
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